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FINAL REPORT

A Research Program on Ultrawideband Electromagnetic Pulse

Propagation Through Causal Media

Dr. Natalie A. Cartwright
State University of New York at New Paltz

The general purpose of AFOSR grant “A Research Program on Ultrawideband Elec-
tromagnetic Pulse Propagation Through Causal Media” (FA9550-13-1-0013) was to
obtain a deeper understanding of electromagnetic pulse propagation through disper-
sive material and subsequently use this understanding to look for new ways to improve
technology. The significant work accomplished through this grant was in the area of
waveform design for synthetic aperture radar imaging through dispersive material.

Introduction. When an electromagnetic pulse travels through a dispersive material
each frequency of the transmitted pulse changes in both amplitude and phase, and
each frequency at its own rate. As a consequence, broadband pulses propagating in
dispersive material experience significant amplitude distortion and changes in pulse
velocity. Asymptotic analysis of the exact integral representation of the propagated
field, which utilizes the full causal dispersion relation of the dispersive material, pro-
vides a complete far-field description of the propagated pulse. In 1975, Oughstun and
Sherman [1] utilized asymptotic methods to show that in a dielectric (nonconducting)
material the low-frequency component of the propagated field, the so-called Brillouin
precursor, has a peak amplitude that decays algebraically with propagation distance
(as the inverse square root of propagation distance), whereas other pulse components
decay exponentially. In 2005, Oughstun [2] proposed a Brillouin pulse as the pulse
that experiences the least attenuation due to material absorption. It has been hy-
pothesized that the slow decay rate of the Brillouin pulse can be used to advantage
in radar detection and imaging applications [2, 3, 4].

The question of whether or not the Brillouin precursor is the ideal waveform for
synthetic aperture radar imaging through dispersive material was partially addressed
by Varslot, Morales, and Cheney [5, 6] in a pair of papers appearing in 2010 and 2011.
These authors used a filtered back-projection algorithm to derive an optimal filter
and its associated optimal waveform. The optimization is based upon minimizing
the mean square error of the L2-norm between the ideal image and the reconstructed
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image. The optimal waveform is numerically derived for each noise level by solving
a fixed point equation for the absolute value of the optimal pulse spectrum and then
using a minimum-phase algorithm to obtain the optimal waveform. The authors
concluded that the optimal minimum-phase waveforms have a “transmit spectrum
that is concentrated around the frequencies which are conducive to the generation of
precursors” [6], but no conclusive statement could be made.

The results of our research effort provide an asymptotic expansion of the propagated
electric field component of the impulse response due to scattering by an isotropic
point source in a frequency-dependent dispersive (and lossy) material. We define a
scattering precursor based on this asymptotic expansion. The scattering precursor is
analogous to Oughstun’s Brillouin pulse [2] in that it experiences near optimal (if not
optimal) penetration into the material.

Formulation. We adopt the assumptions and formulation of [5, 6], one of which
assumes the sensor and scatterers are located within in a homogeneous, isotropic,
locally linear dispersive material with a known relative dielectric permittivity ǫ(ω).
Under the assumptions of a scalar model of wave propagation and single-scattering,
the electric field component of the scattered field is given by

Esc(x, t, s) =

∫

C

e−iω(t−2n(ω)|rs,y |/c0)

(16π3|rs,y|)2
ω2P (ω)dωT̃ (y)dy,(1)

where P (ω) is the spectrum of the transmitted pulse, T̃ is a modified target that
accounts for both the target reflectivity and non-planar surface area, y = (y1, y2) is
a two dimensional vector position, and C is a Bromwich contour in the upper half
plane. The complex-valued index of refraction of the dispersive material is n(ω) =
√

ǫ(ω), the flight path γ(s) is parameterized by the slow time s, and rs,y = |Ψ(y)−
γ(s)| is the distance between the antenna and the target. Here, it is assumed that
the targets are stationary and are comprised of linear materials, the antenna is an
isotropic point source, the same antenna is used to transmit and receive, the antenna’s
position remains fixed from transmit to receive, scattering occurs at a known surface
Ψ(x1, x2) = [x1, x1, ψ(x1, x2)]

T , and the target dispersion in known.

It is assumed that the received signal is corrupted by additive white noise η(s, t).
The image is formed by applying a filter Q to the noisy data and back projecting
using only the real part of the refractive index nr(ω) in order to account for phase
delay

I(z) =

∫

eiω
′(t−2nr(ω′)|rs,z|/c0)Q(ω′, s, z)dω′

· [Esc(s, t) + η(s, t)] ds dt.(2)
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The dielectric permittivity of the dispersive material is modeled by the Fung-Ulaby
model [7] for vegetation with the same material parameters as used in [5, 6]. The
Fung-Ulaby model gives the relative dielectric permittivity as a mixing formula for
water and leaf as

(3) ǫ(ω) = vlǫl(ω) + (1− vl),

where vl = 0.10 is the fractional volume of the leaves and

(4) ǫl(ω) = 5.5 +
em − 5.5

1− iωτ
.

Here, em = 5 + 51.56vw, vw is the fractional volume of water, and τ = 8ns is the
relaxation time.

The Scattering Precursor. For a target T that is an isotropic point scatter in-
dependent of frequency, each component of the scattered electric field is given by
Eq. (1), viz.

Esc(s, t) =

∫

C

e−i2ω(t−n(ω)|rs,y |/c0)

16π3|rs,y|2
ω2P (ω)dωT̃(y)dy(5)

∝
∫

C

exp

[

2|rs,y|
c0

φ(ω, θ)

]

ω2P (ω)dω,(6)

where the complex phase function φ is defined as

(7) φ(ω, θ) = iω [n (ω)− θ] = iω
[

√

ǫ(ω)
]

,

and θ = c0t/2|rs,y| is a dimensionless space-time parameter.

For values of θ <
√
4.5vl + 1, the contour may be enclosed in the upper half plane,

which gives Esc(s, t) = 0 for t < (2|rs,y|/c)
√
4.5vl + 1. For values of θ ≥

√
4.5vl + 1,

an asymptotic approximation to Esc(s, t), valid for large propagation distances |rs,y|,
may be obtained by use of a uniform asymptotic expansion of the integral representa-
tion Eq. (1). There is one accessible saddle point ωsp(θ) of the complex phase function
φ(ω, θ) that moves down along the positive imaginary axis for

√
4.5vl + 1 < θ < θ0,

crosses the origin at the space-time point θ = θ0, and continues down the negative
imaginary axis approaching the branch point at −i/τ for θ > θ0. The saddle point
ωsp(θ) coincides with the amplitude critical point ω2 appearing in Eq. (1) when θ = θ0.
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A uniform asymptotic method is obtained following Bleistein [8] with the result

Esc(s, t) ∼ a0

(

2|rs,y|
c0

)−3/2

W2



γ

√

2|rs,y|
c0





+ a1

(

2|rs,y|
c0

)−2

W3



γ

√

2|rs,y|
c0



 ,(8)

as |rs,y| → ∞. Here,

a0 =

(

ω2

t2

)

P (ω)
dω

dt

∣

∣

∣

∣

t=0,ω=0

,(9)

a1 =
1

γ

[

a0 −
(ω

t

)2

P (ω)
dω

dt

∣

∣

∣

∣

t=−γ,ω=ωsp(θ)

]

,(10)

γ =
√

2φ(ωsp, θ),(11)

Wn(ξ) =
√
2π

(

− d

dξ

)n

eξ
2/2 for n = 0, 1, 2, . . . .(12)

An example of a scattering precursor waveform is shown in Fig. (1) as a function of
θ.

Comparison to Previous Work. The optimal waveform of Varslot et al. [5] is ob-
tained by minimizing the mean-square error between the reconstructed image Eq. (2)
and the ideal image

(13) IΩz
(z) =

∫

Ωz

ei(z−y)·ξT (y)dξ,

where Ωz defines the data collection manifold, the set of Fourier components of T
that are present in the data, and (ω, s) → ξ is a Stolt change of variables. The
minimization is subject to the constraint that the total transmitted energy along the
flight path γ(s) is fixed. The minimization leads to a fixed point algorithm that is
solved numerically to give the magnitude of the spectrum of the optimal waveform.
The minimum phase waveform of this spectrum then gives the optimal waveform.
The optimal waveform is dependent upon the signal-to-noise ratio (SNR). Figure (2)
shows the optimal waveforms derived by Varslot, et al. for various signal-to-noise
ratios.

Comparison of the scattering precursor given in Fig. (1) with optimal waveforms
for high SNR in Fig. (2) shows that the two waveforms are similar although they
are derived in very different ways. The scattering precursor is given by an analytic
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Figure 1. A scattering precursor waveform for the Fung-Ulaby model
of dielectric permittivity.

Figure 2. Optimal waveforms for various signal to noise ratios given
in T. Varslot, J. H. Morales, M. Cheney, Waveform design for synthetic-

aperture radar imaging through dispersive media, SIAM J. Appl. Math.,
71 (2011), pp. 1780 – 1800.
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expression based upon the material properties through which the wave travels whereas
the optimal waveform requires the numerical solution of a minimization problem.

Future Work. In order to finish our analysis of waveform design for synthetic aper-
ture radar imaging through dispersive material, resolution analysis for both waveforms
and a comparison of the image reconstructions for the two waveforms is needed. This
work is forthcoming.
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